skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malik, Manasi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Oxytocin acts through the oxytocin receptor (OXTR) to modulate uterine contractility. We previously identified OXTR genetic variants and showed that, in HEK293T cells, two of the OXTR protein variants localized to the cell surface less than wild-type OXTR. Here, we sought to measure OXTR in the more native human myometrial smooth muscle cell (HMSMC) line on both the cell-surface and across the whole cell, and used CRISPR editing to add an HA tag to the endogenous OXTR gene for anti-HA measurement. Quantitative flow cytometry revealed that these cells possessed 55,000 ± 3200 total OXTRs and 4900 ± 390 cell-surface OXTRs per cell. To identify any differential wild-type versus variant localization, we transiently transfected HMSMCs to exogenously express wild-type or variant OXTR with HA and green fluorescent protein tags. Total protein expression of wild-type OXTR and all tested variants were similar. However, the two variants with lower surface localization in HEK293T cells also presented lower surface localization in HMSMCs. Overall, we confirm the differential surface localization of variant OXTR in a more native cell type, and further demonstrate that the quantitative flow cytometry technique is adaptable to whole-cell measurements. 
    more » « less